This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that ph may depend on z as well as on v and y . (Contributed by Alexander van der Vekens, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elovmpowrd.o | ⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) | |
| Assertion | elovmpowrd | ⊢ ( 𝑍 ∈ ( 𝑉 𝑂 𝑌 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpowrd.o | ⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) | |
| 2 | csbwrdg | ⊢ ( 𝑣 ∈ V → ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 = Word 𝑣 ) | |
| 3 | 2 | eqcomd | ⊢ ( 𝑣 ∈ V → Word 𝑣 = ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑣 ∈ V ∧ 𝑦 ∈ V ) → Word 𝑣 = ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ) |
| 5 | 4 | rabeqdv | ⊢ ( ( 𝑣 ∈ V ∧ 𝑦 ∈ V ) → { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } = { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
| 6 | 5 | mpoeq3ia | ⊢ ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
| 7 | 1 6 | eqtri | ⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
| 8 | csbwrdg | ⊢ ( 𝑉 ∈ V → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 = Word 𝑉 ) | |
| 9 | wrdexg | ⊢ ( 𝑉 ∈ V → Word 𝑉 ∈ V ) | |
| 10 | 8 9 | eqeltrd | ⊢ ( 𝑉 ∈ V → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ∈ V ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ∈ V ) |
| 12 | 7 11 | elovmporab1w | ⊢ ( 𝑍 ∈ ( 𝑉 𝑂 𝑌 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ) ) |
| 13 | 8 | eleq2d | ⊢ ( 𝑉 ∈ V → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ↔ 𝑍 ∈ Word 𝑉 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ↔ 𝑍 ∈ Word 𝑉 ) ) |
| 15 | id | ⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) | |
| 16 | 15 | 3expia | ⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ Word 𝑉 → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) ) |
| 17 | 14 16 | sylbid | ⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |
| 19 | 12 18 | syl | ⊢ ( 𝑍 ∈ ( 𝑉 𝑂 𝑌 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |