This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbwrdg | ⊢ ( 𝑆 ∈ 𝑉 → ⦋ 𝑆 / 𝑥 ⦌ Word 𝑥 = Word 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word | ⊢ Word 𝑥 = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 } | |
| 2 | 1 | csbeq2i | ⊢ ⦋ 𝑆 / 𝑥 ⦌ Word 𝑥 = ⦋ 𝑆 / 𝑥 ⦌ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 } |
| 3 | sbcrex | ⊢ ( [ 𝑆 / 𝑥 ] ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 ↔ ∃ 𝑙 ∈ ℕ0 [ 𝑆 / 𝑥 ] 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 ) | |
| 4 | sbcfg | ⊢ ( 𝑆 ∈ 𝑉 → ( [ 𝑆 / 𝑥 ] 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 ↔ ⦋ 𝑆 / 𝑥 ⦌ 𝑤 : ⦋ 𝑆 / 𝑥 ⦌ ( 0 ..^ 𝑙 ) ⟶ ⦋ 𝑆 / 𝑥 ⦌ 𝑥 ) ) | |
| 5 | csbconstg | ⊢ ( 𝑆 ∈ 𝑉 → ⦋ 𝑆 / 𝑥 ⦌ 𝑤 = 𝑤 ) | |
| 6 | csbconstg | ⊢ ( 𝑆 ∈ 𝑉 → ⦋ 𝑆 / 𝑥 ⦌ ( 0 ..^ 𝑙 ) = ( 0 ..^ 𝑙 ) ) | |
| 7 | csbvarg | ⊢ ( 𝑆 ∈ 𝑉 → ⦋ 𝑆 / 𝑥 ⦌ 𝑥 = 𝑆 ) | |
| 8 | 5 6 7 | feq123d | ⊢ ( 𝑆 ∈ 𝑉 → ( ⦋ 𝑆 / 𝑥 ⦌ 𝑤 : ⦋ 𝑆 / 𝑥 ⦌ ( 0 ..^ 𝑙 ) ⟶ ⦋ 𝑆 / 𝑥 ⦌ 𝑥 ↔ 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 9 | 4 8 | bitrd | ⊢ ( 𝑆 ∈ 𝑉 → ( [ 𝑆 / 𝑥 ] 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 ↔ 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝑆 ∈ 𝑉 → ( ∃ 𝑙 ∈ ℕ0 [ 𝑆 / 𝑥 ] 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 ↔ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 11 | 3 10 | bitrid | ⊢ ( 𝑆 ∈ 𝑉 → ( [ 𝑆 / 𝑥 ] ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 ↔ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 12 | 11 | abbidv | ⊢ ( 𝑆 ∈ 𝑉 → { 𝑤 ∣ [ 𝑆 / 𝑥 ] ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 } = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } ) |
| 13 | csbab | ⊢ ⦋ 𝑆 / 𝑥 ⦌ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 } = { 𝑤 ∣ [ 𝑆 / 𝑥 ] ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 } | |
| 14 | df-word | ⊢ Word 𝑆 = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } | |
| 15 | 12 13 14 | 3eqtr4g | ⊢ ( 𝑆 ∈ 𝑉 → ⦋ 𝑆 / 𝑥 ⦌ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑥 } = Word 𝑆 ) |
| 16 | 2 15 | eqtrid | ⊢ ( 𝑆 ∈ 𝑉 → ⦋ 𝑆 / 𝑥 ⦌ Word 𝑥 = Word 𝑆 ) |