This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that ph may depend on z as well as on v and y . (Contributed by Alexander van der Vekens, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elovmpowrd.o | |- O = ( v e. _V , y e. _V |-> { z e. Word v | ph } ) |
|
| Assertion | elovmpowrd | |- ( Z e. ( V O Y ) -> ( V e. _V /\ Y e. _V /\ Z e. Word V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpowrd.o | |- O = ( v e. _V , y e. _V |-> { z e. Word v | ph } ) |
|
| 2 | csbwrdg | |- ( v e. _V -> [_ v / x ]_ Word x = Word v ) |
|
| 3 | 2 | eqcomd | |- ( v e. _V -> Word v = [_ v / x ]_ Word x ) |
| 4 | 3 | adantr | |- ( ( v e. _V /\ y e. _V ) -> Word v = [_ v / x ]_ Word x ) |
| 5 | 4 | rabeqdv | |- ( ( v e. _V /\ y e. _V ) -> { z e. Word v | ph } = { z e. [_ v / x ]_ Word x | ph } ) |
| 6 | 5 | mpoeq3ia | |- ( v e. _V , y e. _V |-> { z e. Word v | ph } ) = ( v e. _V , y e. _V |-> { z e. [_ v / x ]_ Word x | ph } ) |
| 7 | 1 6 | eqtri | |- O = ( v e. _V , y e. _V |-> { z e. [_ v / x ]_ Word x | ph } ) |
| 8 | csbwrdg | |- ( V e. _V -> [_ V / x ]_ Word x = Word V ) |
|
| 9 | wrdexg | |- ( V e. _V -> Word V e. _V ) |
|
| 10 | 8 9 | eqeltrd | |- ( V e. _V -> [_ V / x ]_ Word x e. _V ) |
| 11 | 10 | adantr | |- ( ( V e. _V /\ Y e. _V ) -> [_ V / x ]_ Word x e. _V ) |
| 12 | 7 11 | elovmporab1w | |- ( Z e. ( V O Y ) -> ( V e. _V /\ Y e. _V /\ Z e. [_ V / x ]_ Word x ) ) |
| 13 | 8 | eleq2d | |- ( V e. _V -> ( Z e. [_ V / x ]_ Word x <-> Z e. Word V ) ) |
| 14 | 13 | adantr | |- ( ( V e. _V /\ Y e. _V ) -> ( Z e. [_ V / x ]_ Word x <-> Z e. Word V ) ) |
| 15 | id | |- ( ( V e. _V /\ Y e. _V /\ Z e. Word V ) -> ( V e. _V /\ Y e. _V /\ Z e. Word V ) ) |
|
| 16 | 15 | 3expia | |- ( ( V e. _V /\ Y e. _V ) -> ( Z e. Word V -> ( V e. _V /\ Y e. _V /\ Z e. Word V ) ) ) |
| 17 | 14 16 | sylbid | |- ( ( V e. _V /\ Y e. _V ) -> ( Z e. [_ V / x ]_ Word x -> ( V e. _V /\ Y e. _V /\ Z e. Word V ) ) ) |
| 18 | 17 | 3impia | |- ( ( V e. _V /\ Y e. _V /\ Z e. [_ V / x ]_ Word x ) -> ( V e. _V /\ Y e. _V /\ Z e. Word V ) ) |
| 19 | 12 18 | syl | |- ( Z e. ( V O Y ) -> ( V e. _V /\ Y e. _V /\ Z e. Word V ) ) |