This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellimciota.f | |- ( ph -> F : A --> CC ) |
|
| ellimciota.a | |- ( ph -> A C_ CC ) |
||
| ellimciota.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
||
| ellimciota.4 | |- ( ph -> ( F limCC B ) =/= (/) ) |
||
| ellimciota.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | ellimciota | |- ( ph -> ( iota x x e. ( F limCC B ) ) e. ( F limCC B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimciota.f | |- ( ph -> F : A --> CC ) |
|
| 2 | ellimciota.a | |- ( ph -> A C_ CC ) |
|
| 3 | ellimciota.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
|
| 4 | ellimciota.4 | |- ( ph -> ( F limCC B ) =/= (/) ) |
|
| 5 | ellimciota.k | |- K = ( TopOpen ` CCfld ) |
|
| 6 | eleq1 | |- ( x = y -> ( x e. ( F limCC B ) <-> y e. ( F limCC B ) ) ) |
|
| 7 | 6 | cbviotavw | |- ( iota x x e. ( F limCC B ) ) = ( iota y y e. ( F limCC B ) ) |
| 8 | iotaex | |- ( iota y y e. ( F limCC B ) ) e. _V |
|
| 9 | n0 | |- ( ( F limCC B ) =/= (/) <-> E. x x e. ( F limCC B ) ) |
|
| 10 | 4 9 | sylib | |- ( ph -> E. x x e. ( F limCC B ) ) |
| 11 | 1 2 3 5 | limcmo | |- ( ph -> E* x x e. ( F limCC B ) ) |
| 12 | df-eu | |- ( E! x x e. ( F limCC B ) <-> ( E. x x e. ( F limCC B ) /\ E* x x e. ( F limCC B ) ) ) |
|
| 13 | 10 11 12 | sylanbrc | |- ( ph -> E! x x e. ( F limCC B ) ) |
| 14 | eleq1 | |- ( x = ( iota y y e. ( F limCC B ) ) -> ( x e. ( F limCC B ) <-> ( iota y y e. ( F limCC B ) ) e. ( F limCC B ) ) ) |
|
| 15 | 14 | iota2 | |- ( ( ( iota y y e. ( F limCC B ) ) e. _V /\ E! x x e. ( F limCC B ) ) -> ( ( iota y y e. ( F limCC B ) ) e. ( F limCC B ) <-> ( iota x x e. ( F limCC B ) ) = ( iota y y e. ( F limCC B ) ) ) ) |
| 16 | 8 13 15 | sylancr | |- ( ph -> ( ( iota y y e. ( F limCC B ) ) e. ( F limCC B ) <-> ( iota x x e. ( F limCC B ) ) = ( iota y y e. ( F limCC B ) ) ) ) |
| 17 | 7 16 | mpbiri | |- ( ph -> ( iota y y e. ( F limCC B ) ) e. ( F limCC B ) ) |
| 18 | 7 17 | eqeltrid | |- ( ph -> ( iota x x e. ( F limCC B ) ) e. ( F limCC B ) ) |