This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliocre | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioc | ⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 2 | 1 | elixx3g | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 3 | 2 | biimpi | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 4 | 3 | simpld | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
| 5 | 4 | simp3d | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐶 ∈ ℝ* ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 7 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 8 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 9 | 8 | a1i | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ ∈ ℝ* ) |
| 10 | 4 | simp1d | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 11 | mnfle | ⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ ≤ 𝐴 ) |
| 13 | 3 | simprd | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 14 | 13 | simpld | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 < 𝐶 ) |
| 15 | 9 10 5 12 14 | xrlelttrd | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ < 𝐶 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → -∞ < 𝐶 ) |
| 17 | 13 | simprd | ⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐶 ≤ 𝐵 ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ≤ 𝐵 ) |
| 19 | xrre | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) | |
| 20 | 6 7 16 18 19 | syl22anc | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |