This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliocre | |- ( ( B e. RR /\ C e. ( A (,] B ) ) -> C e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioc | |- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
|
| 2 | 1 | elixx3g | |- ( C e. ( A (,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C <_ B ) ) ) |
| 3 | 2 | biimpi | |- ( C e. ( A (,] B ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C <_ B ) ) ) |
| 4 | 3 | simpld | |- ( C e. ( A (,] B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 5 | 4 | simp3d | |- ( C e. ( A (,] B ) -> C e. RR* ) |
| 6 | 5 | adantl | |- ( ( B e. RR /\ C e. ( A (,] B ) ) -> C e. RR* ) |
| 7 | simpl | |- ( ( B e. RR /\ C e. ( A (,] B ) ) -> B e. RR ) |
|
| 8 | mnfxr | |- -oo e. RR* |
|
| 9 | 8 | a1i | |- ( C e. ( A (,] B ) -> -oo e. RR* ) |
| 10 | 4 | simp1d | |- ( C e. ( A (,] B ) -> A e. RR* ) |
| 11 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 12 | 10 11 | syl | |- ( C e. ( A (,] B ) -> -oo <_ A ) |
| 13 | 3 | simprd | |- ( C e. ( A (,] B ) -> ( A < C /\ C <_ B ) ) |
| 14 | 13 | simpld | |- ( C e. ( A (,] B ) -> A < C ) |
| 15 | 9 10 5 12 14 | xrlelttrd | |- ( C e. ( A (,] B ) -> -oo < C ) |
| 16 | 15 | adantl | |- ( ( B e. RR /\ C e. ( A (,] B ) ) -> -oo < C ) |
| 17 | 13 | simprd | |- ( C e. ( A (,] B ) -> C <_ B ) |
| 18 | 17 | adantl | |- ( ( B e. RR /\ C e. ( A (,] B ) ) -> C <_ B ) |
| 19 | xrre | |- ( ( ( C e. RR* /\ B e. RR ) /\ ( -oo < C /\ C <_ B ) ) -> C e. RR ) |
|
| 20 | 6 7 16 18 19 | syl22anc | |- ( ( B e. RR /\ C e. ( A (,] B ) ) -> C e. RR ) |