This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a half-open range of nonnegative integers is either 0 or a member of the corresponding half-open range of positive integers. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo0l | |- ( K e. ( 0 ..^ N ) -> ( K = 0 \/ K e. ( 1 ..^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( K e. ( 0 ..^ N ) <-> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
|
| 2 | 1 | simp2bi | |- ( K e. ( 0 ..^ N ) -> N e. NN ) |
| 3 | fzo0sn0fzo1 | |- ( N e. NN -> ( 0 ..^ N ) = ( { 0 } u. ( 1 ..^ N ) ) ) |
|
| 4 | 3 | eleq2d | |- ( N e. NN -> ( K e. ( 0 ..^ N ) <-> K e. ( { 0 } u. ( 1 ..^ N ) ) ) ) |
| 5 | elun | |- ( K e. ( { 0 } u. ( 1 ..^ N ) ) <-> ( K e. { 0 } \/ K e. ( 1 ..^ N ) ) ) |
|
| 6 | elsni | |- ( K e. { 0 } -> K = 0 ) |
|
| 7 | 6 | orim1i | |- ( ( K e. { 0 } \/ K e. ( 1 ..^ N ) ) -> ( K = 0 \/ K e. ( 1 ..^ N ) ) ) |
| 8 | 5 7 | sylbi | |- ( K e. ( { 0 } u. ( 1 ..^ N ) ) -> ( K = 0 \/ K e. ( 1 ..^ N ) ) ) |
| 9 | 4 8 | biimtrdi | |- ( N e. NN -> ( K e. ( 0 ..^ N ) -> ( K = 0 \/ K e. ( 1 ..^ N ) ) ) ) |
| 10 | 2 9 | mpcom | |- ( K e. ( 0 ..^ N ) -> ( K = 0 \/ K e. ( 1 ..^ N ) ) ) |