This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all the finite intersections of the elements of A . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fival | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fi | ⊢ fi = ( 𝑧 ∈ V ↦ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) | |
| 2 | pweq | ⊢ ( 𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴 ) | |
| 3 | 2 | ineq1d | ⊢ ( 𝑧 = 𝐴 → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) ) |
| 4 | 3 | rexeqdv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = ∩ 𝑥 ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 ) ) |
| 5 | 4 | abbidv | ⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = ∩ 𝑥 } = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) |
| 6 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 7 | simpr | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → 𝑦 = ∩ 𝑥 ) | |
| 8 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 ) | |
| 9 | 8 | elpwid | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 10 | eqvisset | ⊢ ( 𝑦 = ∩ 𝑥 → ∩ 𝑥 ∈ V ) | |
| 11 | intex | ⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝑦 = ∩ 𝑥 → 𝑥 ≠ ∅ ) |
| 13 | intssuni2 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝐴 ) | |
| 14 | 9 12 13 | syl2an | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → ∩ 𝑥 ⊆ ∪ 𝐴 ) |
| 15 | 7 14 | eqsstrd | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → 𝑦 ⊆ ∪ 𝐴 ) |
| 16 | velpw | ⊢ ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴 ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → 𝑦 ∈ 𝒫 ∪ 𝐴 ) |
| 18 | 17 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴 ) |
| 19 | 18 | abssi | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ⊆ 𝒫 ∪ 𝐴 |
| 20 | uniexg | ⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V ) | |
| 21 | 20 | pwexd | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V ) |
| 22 | ssexg | ⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V ) → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ∈ V ) | |
| 23 | 19 21 22 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ∈ V ) |
| 24 | 1 5 6 23 | fvmptd3 | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) |