This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a set with three elements removed. Similar to eldifsn and eldifpr . (Contributed by David A. Wheeler, 22-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldiftp | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ) ) | |
| 2 | eltpg | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸 ) ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸 ) ) ) |
| 4 | ne3anior | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸 ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ) ) |
| 6 | 5 | pm5.32i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ) ) |
| 7 | 1 6 | bitri | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ) ) |