This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a set with three elements removed. Similar to eldifsn and eldifpr . (Contributed by David A. Wheeler, 22-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldiftp | |- ( A e. ( B \ { C , D , E } ) <-> ( A e. B /\ ( A =/= C /\ A =/= D /\ A =/= E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( A e. ( B \ { C , D , E } ) <-> ( A e. B /\ -. A e. { C , D , E } ) ) |
|
| 2 | eltpg | |- ( A e. B -> ( A e. { C , D , E } <-> ( A = C \/ A = D \/ A = E ) ) ) |
|
| 3 | 2 | notbid | |- ( A e. B -> ( -. A e. { C , D , E } <-> -. ( A = C \/ A = D \/ A = E ) ) ) |
| 4 | ne3anior | |- ( ( A =/= C /\ A =/= D /\ A =/= E ) <-> -. ( A = C \/ A = D \/ A = E ) ) |
|
| 5 | 3 4 | bitr4di | |- ( A e. B -> ( -. A e. { C , D , E } <-> ( A =/= C /\ A =/= D /\ A =/= E ) ) ) |
| 6 | 5 | pm5.32i | |- ( ( A e. B /\ -. A e. { C , D , E } ) <-> ( A e. B /\ ( A =/= C /\ A =/= D /\ A =/= E ) ) ) |
| 7 | 1 6 | bitri | |- ( A e. ( B \ { C , D , E } ) <-> ( A e. B /\ ( A =/= C /\ A =/= D /\ A =/= E ) ) ) |