This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a set with two elements removed. Similar to eldifsn and eldiftp . (Contributed by Mario Carneiro, 18-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifpr | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
| 3 | neanior | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) | |
| 4 | 2 3 | bitr4di | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) ) |
| 5 | 4 | pm5.32i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) ) |
| 6 | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ) ) | |
| 7 | 3anass | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) |