This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a set with two elements removed. Similar to eldifsn and eldiftp . (Contributed by Mario Carneiro, 18-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifpr | |- ( A e. ( B \ { C , D } ) <-> ( A e. B /\ A =/= C /\ A =/= D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg | |- ( A e. B -> ( A e. { C , D } <-> ( A = C \/ A = D ) ) ) |
|
| 2 | 1 | notbid | |- ( A e. B -> ( -. A e. { C , D } <-> -. ( A = C \/ A = D ) ) ) |
| 3 | neanior | |- ( ( A =/= C /\ A =/= D ) <-> -. ( A = C \/ A = D ) ) |
|
| 4 | 2 3 | bitr4di | |- ( A e. B -> ( -. A e. { C , D } <-> ( A =/= C /\ A =/= D ) ) ) |
| 5 | 4 | pm5.32i | |- ( ( A e. B /\ -. A e. { C , D } ) <-> ( A e. B /\ ( A =/= C /\ A =/= D ) ) ) |
| 6 | eldif | |- ( A e. ( B \ { C , D } ) <-> ( A e. B /\ -. A e. { C , D } ) ) |
|
| 7 | 3anass | |- ( ( A e. B /\ A =/= C /\ A =/= D ) <-> ( A e. B /\ ( A =/= C /\ A =/= D ) ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( A e. ( B \ { C , D } ) <-> ( A e. B /\ A =/= C /\ A =/= D ) ) |