This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elclnbgrelnbgr | ⊢ ( ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ∧ 𝑋 ≠ 𝑁 ) → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | clnbgrcl | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 3 | 1 | dfclnbgr4 | ⊢ ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 4 | 2 3 | syl | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 5 | 4 | eleq2d | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ↔ 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
| 6 | elun | ⊢ ( 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ↔ ( 𝑋 ∈ { 𝑁 } ∨ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) | |
| 7 | elsng | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ { 𝑁 } ↔ 𝑋 = 𝑁 ) ) | |
| 8 | eqneqall | ⊢ ( 𝑋 = 𝑁 → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) | |
| 9 | 8 | a1i | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 = 𝑁 → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
| 10 | 7 9 | sylbid | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ { 𝑁 } → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
| 11 | ax-1 | ⊢ ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) | |
| 12 | 11 | a1i | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
| 13 | 10 12 | jaod | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( ( 𝑋 ∈ { 𝑁 } ∨ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
| 14 | 6 13 | biimtrid | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
| 15 | 5 14 | sylbid | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) ) |
| 16 | 15 | pm2.43i | ⊢ ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) → ( 𝑋 ≠ 𝑁 → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ∧ 𝑋 ≠ 𝑁 ) → 𝑋 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |