This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval ). (Contributed by AV, 8-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfclnbgr3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| dfclnbgr3.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | dfclnbgr3 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclnbgr3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | dfclnbgr3.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 4 | 3 | eqcomi | ⊢ ran ( iEdg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 5 | 1 4 | clnbgrval | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |
| 7 | 2 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 8 | 7 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 9 | 8 | rexeqi | ⊢ ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ran 𝐼 { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
| 10 | funfn | ⊢ ( Fun 𝐼 ↔ 𝐼 Fn dom 𝐼 ) | |
| 11 | 10 | biimpi | ⊢ ( Fun 𝐼 → 𝐼 Fn dom 𝐼 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → 𝐼 Fn dom 𝐼 ) |
| 13 | sseq2 | ⊢ ( 𝑒 = ( 𝐼 ‘ 𝑖 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 14 | 13 | rexrn | ⊢ ( 𝐼 Fn dom 𝐼 → ( ∃ 𝑒 ∈ ran 𝐼 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) ) ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → ( ∃ 𝑒 ∈ ran 𝐼 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) ) ) |
| 16 | 9 15 | bitrid | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) ) ) |
| 17 | 16 | rabbidv | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) } ) |
| 18 | 17 | uneq2d | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) } ) ) |
| 19 | 6 18 | eqtrd | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ Fun 𝐼 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼 ‘ 𝑖 ) } ) ) |