This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfclnbgr4.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | dfclnbgr4 | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclnbgr4.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | dfclnbgr2 | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) ) |
| 4 | undif2 | ⊢ ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) | |
| 5 | rabdif | ⊢ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } | |
| 6 | 5 | uneq2i | ⊢ ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
| 7 | 4 6 | eqtr3i | ⊢ ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) = ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
| 8 | 1 2 | dfnbgr2 | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
| 9 | 8 | eqcomd | ⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } = ( 𝐺 NeighbVtx 𝑁 ) ) |
| 10 | 9 | uneq2d | ⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 11 | 7 10 | eqtrid | ⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 12 | 3 11 | eqtrd | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |