This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in Kalmbach p. 15. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ela | ⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 0ℋ ⋖ℋ 𝑥 ↔ 0ℋ ⋖ℋ 𝐴 ) ) | |
| 2 | df-at | ⊢ HAtoms = { 𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥 } | |
| 3 | 1 2 | elrab2 | ⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴 ) ) |