This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elat2 | |- ( A e. HAtoms <-> ( A e. CH /\ ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ela | |- ( A e. HAtoms <-> ( A e. CH /\ 0H |
|
| 2 | h0elch | |- 0H e. CH |
|
| 3 | cvbr2 | |- ( ( 0H e. CH /\ A e. CH ) -> ( 0H |
|
| 4 | 2 3 | mpan | |- ( A e. CH -> ( 0H |
| 5 | ch0pss | |- ( A e. CH -> ( 0H C. A <-> A =/= 0H ) ) |
|
| 6 | ch0pss | |- ( x e. CH -> ( 0H C. x <-> x =/= 0H ) ) |
|
| 7 | 6 | imbi1d | |- ( x e. CH -> ( ( 0H C. x -> x = A ) <-> ( x =/= 0H -> x = A ) ) ) |
| 8 | 7 | imbi2d | |- ( x e. CH -> ( ( x C_ A -> ( 0H C. x -> x = A ) ) <-> ( x C_ A -> ( x =/= 0H -> x = A ) ) ) ) |
| 9 | impexp | |- ( ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> ( 0H C. x -> ( x C_ A -> x = A ) ) ) |
|
| 10 | bi2.04 | |- ( ( 0H C. x -> ( x C_ A -> x = A ) ) <-> ( x C_ A -> ( 0H C. x -> x = A ) ) ) |
|
| 11 | 9 10 | bitri | |- ( ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> ( x C_ A -> ( 0H C. x -> x = A ) ) ) |
| 12 | orcom | |- ( ( x = A \/ x = 0H ) <-> ( x = 0H \/ x = A ) ) |
|
| 13 | neor | |- ( ( x = 0H \/ x = A ) <-> ( x =/= 0H -> x = A ) ) |
|
| 14 | 12 13 | bitri | |- ( ( x = A \/ x = 0H ) <-> ( x =/= 0H -> x = A ) ) |
| 15 | 14 | imbi2i | |- ( ( x C_ A -> ( x = A \/ x = 0H ) ) <-> ( x C_ A -> ( x =/= 0H -> x = A ) ) ) |
| 16 | 8 11 15 | 3bitr4g | |- ( x e. CH -> ( ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) |
| 17 | 16 | ralbiia | |- ( A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) |
| 18 | 17 | a1i | |- ( A e. CH -> ( A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) |
| 19 | 5 18 | anbi12d | |- ( A e. CH -> ( ( 0H C. A /\ A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) ) <-> ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) ) |
| 20 | 4 19 | bitr2d | |- ( A e. CH -> ( ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) <-> 0H |
| 21 | 20 | pm5.32i | |- ( ( A e. CH /\ ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) <-> ( A e. CH /\ 0H |
| 22 | 1 21 | bitr4i | |- ( A e. HAtoms <-> ( A e. CH /\ ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) ) |