This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab . (Contributed by GG, 12-Oct-2024) (Revised by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabd2.ex | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| elabd2.eq | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∣ 𝜓 } ) | ||
| elabd2.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | elabd2 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐵 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabd2.ex | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | elabd2.eq | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∣ 𝜓 } ) | |
| 3 | elabd2.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 5 | elab6g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) | |
| 6 | 4 5 | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 7 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 8 | 3 | pm5.74da | ⊢ ( 𝜑 → ( ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( 𝑥 = 𝐴 → 𝜒 ) ) ) |
| 9 | 8 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜒 ) ) ) |
| 10 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜒 ) ) | |
| 11 | 9 10 | bitrdi | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜒 ) ) ) |
| 12 | pm5.5 | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝜒 ) ↔ 𝜒 ) ) | |
| 13 | 11 12 | sylan9bb | ⊢ ( ( 𝜑 ∧ ∃ 𝑥 𝑥 = 𝐴 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜒 ) ) |
| 14 | 7 13 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜒 ) ) |
| 15 | 6 14 | bitrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ 𝐵 ↔ 𝜒 ) ) |
| 16 | 1 15 | mpdan | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐵 ↔ 𝜒 ) ) |