This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab . (Contributed by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabd3.ex | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| elabd3.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | elabd3 | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabd3.ex | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | elabd3.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | eqidd | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ 𝜓 } ) | |
| 4 | 1 3 2 | elabd2 | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) ) |