This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab . (Contributed by GG, 12-Oct-2024) (Revised by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabd2.ex | |- ( ph -> A e. V ) |
|
| elabd2.eq | |- ( ph -> B = { x | ps } ) |
||
| elabd2.is | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
| Assertion | elabd2 | |- ( ph -> ( A e. B <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabd2.ex | |- ( ph -> A e. V ) |
|
| 2 | elabd2.eq | |- ( ph -> B = { x | ps } ) |
|
| 3 | elabd2.is | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
| 4 | 2 | eleq2d | |- ( ph -> ( A e. B <-> A e. { x | ps } ) ) |
| 5 | elab6g | |- ( A e. V -> ( A e. { x | ps } <-> A. x ( x = A -> ps ) ) ) |
|
| 6 | 4 5 | sylan9bb | |- ( ( ph /\ A e. V ) -> ( A e. B <-> A. x ( x = A -> ps ) ) ) |
| 7 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 8 | 3 | pm5.74da | |- ( ph -> ( ( x = A -> ps ) <-> ( x = A -> ch ) ) ) |
| 9 | 8 | albidv | |- ( ph -> ( A. x ( x = A -> ps ) <-> A. x ( x = A -> ch ) ) ) |
| 10 | 19.23v | |- ( A. x ( x = A -> ch ) <-> ( E. x x = A -> ch ) ) |
|
| 11 | 9 10 | bitrdi | |- ( ph -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ch ) ) ) |
| 12 | pm5.5 | |- ( E. x x = A -> ( ( E. x x = A -> ch ) <-> ch ) ) |
|
| 13 | 11 12 | sylan9bb | |- ( ( ph /\ E. x x = A ) -> ( A. x ( x = A -> ps ) <-> ch ) ) |
| 14 | 7 13 | sylan2 | |- ( ( ph /\ A e. V ) -> ( A. x ( x = A -> ps ) <-> ch ) ) |
| 15 | 6 14 | bitrd | |- ( ( ph /\ A e. V ) -> ( A e. B <-> ch ) ) |
| 16 | 1 15 | mpdan | |- ( ph -> ( A e. B <-> ch ) ) |