This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the eigenvector function. Theorem eleigveccl shows that eigvecT , the set of eigenvectors of Hilbert space operator T , are Hilbert space vectors. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eigvec | ⊢ eigvec = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑧 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cei | ⊢ eigvec | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | chba | ⊢ ℋ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | 2 2 3 | co | ⊢ ( ℋ ↑m ℋ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | c0h | ⊢ 0ℋ | |
| 7 | 2 6 | cdif | ⊢ ( ℋ ∖ 0ℋ ) |
| 8 | vz | ⊢ 𝑧 | |
| 9 | cc | ⊢ ℂ | |
| 10 | 1 | cv | ⊢ 𝑡 |
| 11 | 5 | cv | ⊢ 𝑥 |
| 12 | 11 10 | cfv | ⊢ ( 𝑡 ‘ 𝑥 ) |
| 13 | 8 | cv | ⊢ 𝑧 |
| 14 | csm | ⊢ ·ℎ | |
| 15 | 13 11 14 | co | ⊢ ( 𝑧 ·ℎ 𝑥 ) |
| 16 | 12 15 | wceq | ⊢ ( 𝑡 ‘ 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) |
| 17 | 16 8 9 | wrex | ⊢ ∃ 𝑧 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) |
| 18 | 17 5 7 | crab | ⊢ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑧 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) } |
| 19 | 1 4 18 | cmpt | ⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑧 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) } ) |
| 20 | 0 19 | wceq | ⊢ eigvec = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑧 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) } ) |