This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvalfval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigval ‘ 𝑇 ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( eigvec ‘ 𝑇 ) ∈ V | |
| 2 | 1 | mptex | ⊢ ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ∈ V |
| 3 | ax-hilex | ⊢ ℋ ∈ V | |
| 4 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( eigvec ‘ 𝑡 ) = ( eigvec ‘ 𝑇 ) ) | |
| 5 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 7 | 6 | oveq1d | ⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) |
| 8 | 4 7 | mpteq12dv | ⊢ ( 𝑡 = 𝑇 → ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 9 | df-eigval | ⊢ eigval = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) | |
| 10 | 2 3 3 8 9 | fvmptmap | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigval ‘ 𝑇 ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |