This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvecval | |- ( T : ~H --> ~H -> ( eigvec ` T ) = { x e. ( ~H \ 0H ) | E. y e. CC ( T ` x ) = ( y .h x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | difexg | |- ( ~H e. _V -> ( ~H \ 0H ) e. _V ) |
|
| 3 | 1 2 | ax-mp | |- ( ~H \ 0H ) e. _V |
| 4 | 3 | rabex | |- { x e. ( ~H \ 0H ) | E. y e. CC ( T ` x ) = ( y .h x ) } e. _V |
| 5 | fveq1 | |- ( t = T -> ( t ` x ) = ( T ` x ) ) |
|
| 6 | 5 | eqeq1d | |- ( t = T -> ( ( t ` x ) = ( y .h x ) <-> ( T ` x ) = ( y .h x ) ) ) |
| 7 | 6 | rexbidv | |- ( t = T -> ( E. y e. CC ( t ` x ) = ( y .h x ) <-> E. y e. CC ( T ` x ) = ( y .h x ) ) ) |
| 8 | 7 | rabbidv | |- ( t = T -> { x e. ( ~H \ 0H ) | E. y e. CC ( t ` x ) = ( y .h x ) } = { x e. ( ~H \ 0H ) | E. y e. CC ( T ` x ) = ( y .h x ) } ) |
| 9 | df-eigvec | |- eigvec = ( t e. ( ~H ^m ~H ) |-> { x e. ( ~H \ 0H ) | E. y e. CC ( t ` x ) = ( y .h x ) } ) |
|
| 10 | 4 1 1 8 9 | fvmptmap | |- ( T : ~H --> ~H -> ( eigvec ` T ) = { x e. ( ~H \ 0H ) | E. y e. CC ( T ` x ) = ( y .h x ) } ) |