This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvalval | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalfval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigval ‘ 𝑇 ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ‘ 𝐴 ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 4 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 5 | 3 4 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝐴 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( normℎ ‘ 𝑥 ) ↑ 2 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
| 8 | 5 7 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) | |
| 10 | ovex | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) → ( ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ‘ 𝐴 ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 12 | 2 11 | sylan9eq | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |