This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvalcl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalval | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
|
| 2 | eleigveccl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) |
|
| 3 | ffvelcdm | |- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
|
| 4 | hicl | |- ( ( ( T ` A ) e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) |
|
| 5 | 3 4 | sylancom | |- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) |
| 6 | 2 5 | syldan | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) .ih A ) e. CC ) |
| 7 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 8 | 7 | recnd | |- ( A e. ~H -> ( normh ` A ) e. CC ) |
| 9 | 2 8 | syl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( normh ` A ) e. CC ) |
| 10 | 9 | sqcld | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) e. CC ) |
| 11 | eleigvec | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) |
|
| 12 | 11 | biimpa | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 13 | sqne0 | |- ( ( normh ` A ) e. CC -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) |
|
| 14 | 8 13 | syl | |- ( A e. ~H -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) |
| 15 | normne0 | |- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
|
| 16 | 14 15 | bitr2d | |- ( A e. ~H -> ( A =/= 0h <-> ( ( normh ` A ) ^ 2 ) =/= 0 ) ) |
| 17 | 16 | biimpa | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
| 18 | 17 | 3adant3 | |- ( ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
| 19 | 12 18 | syl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
| 20 | 6 10 19 | divcld | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) e. CC ) |
| 21 | 1 20 | eqeltrd | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. CC ) |