This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ehleudis.i | ⊢ 𝐼 = ( 1 ... 𝑁 ) | |
| ehleudis.e | ⊢ 𝐸 = ( 𝔼hil ‘ 𝑁 ) | ||
| ehleudis.x | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | ||
| ehleudis.d | ⊢ 𝐷 = ( dist ‘ 𝐸 ) | ||
| Assertion | ehleudisval | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehleudis.i | ⊢ 𝐼 = ( 1 ... 𝑁 ) | |
| 2 | ehleudis.e | ⊢ 𝐸 = ( 𝔼hil ‘ 𝑁 ) | |
| 3 | ehleudis.x | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 4 | ehleudis.d | ⊢ 𝐷 = ( dist ‘ 𝐸 ) | |
| 5 | 2 | ehlval | ⊢ ( 𝑁 ∈ ℕ0 → 𝐸 = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( dist ‘ 𝐸 ) = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
| 7 | 4 6 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → 𝐷 = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
| 8 | 7 | oveqd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) ) |
| 10 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 11 | 1 10 | eqeltri | ⊢ 𝐼 ∈ Fin |
| 12 | 3 | eleq2i | ⊢ ( 𝐹 ∈ 𝑋 ↔ 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 13 | 12 | biimpi | ⊢ ( 𝐹 ∈ 𝑋 → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 15 | 3 | eleq2i | ⊢ ( 𝐺 ∈ 𝑋 ↔ 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 16 | 15 | biimpi | ⊢ ( 𝐺 ∈ 𝑋 → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 18 | eqid | ⊢ ( ℝ ↑m 𝐼 ) = ( ℝ ↑m 𝐼 ) | |
| 19 | 1 | eqcomi | ⊢ ( 1 ... 𝑁 ) = 𝐼 |
| 20 | 19 | fveq2i | ⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) = ( ℝ^ ‘ 𝐼 ) |
| 21 | 20 | fveq2i | ⊢ ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 22 | 18 21 | rrxdsfival | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) → ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 23 | 11 14 17 22 | mp3an2i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 24 | 9 23 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |