This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ehl1eudis.e | ⊢ 𝐸 = ( 𝔼hil ‘ 1 ) | |
| ehl1eudis.x | ⊢ 𝑋 = ( ℝ ↑m { 1 } ) | ||
| ehl1eudis.d | ⊢ 𝐷 = ( dist ‘ 𝐸 ) | ||
| Assertion | ehl1eudis | ⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehl1eudis.e | ⊢ 𝐸 = ( 𝔼hil ‘ 1 ) | |
| 2 | ehl1eudis.x | ⊢ 𝑋 = ( ℝ ↑m { 1 } ) | |
| 3 | ehl1eudis.d | ⊢ 𝐷 = ( dist ‘ 𝐸 ) | |
| 4 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 5 | 1z | ⊢ 1 ∈ ℤ | |
| 6 | fzsn | ⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 1 ... 1 ) = { 1 } |
| 8 | 7 | eqcomi | ⊢ { 1 } = ( 1 ... 1 ) |
| 9 | 8 1 2 3 | ehleudis | ⊢ ( 1 ∈ ℕ0 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 10 | 4 9 | ax-mp | ⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 11 | 2 | eleq2i | ⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 ∈ ( ℝ ↑m { 1 } ) ) |
| 12 | reex | ⊢ ℝ ∈ V | |
| 13 | snex | ⊢ { 1 } ∈ V | |
| 14 | 12 13 | elmap | ⊢ ( 𝑓 ∈ ( ℝ ↑m { 1 } ) ↔ 𝑓 : { 1 } ⟶ ℝ ) |
| 15 | 11 14 | bitri | ⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 : { 1 } ⟶ ℝ ) |
| 16 | id | ⊢ ( 𝑓 : { 1 } ⟶ ℝ → 𝑓 : { 1 } ⟶ ℝ ) | |
| 17 | 1ex | ⊢ 1 ∈ V | |
| 18 | 17 | snid | ⊢ 1 ∈ { 1 } |
| 19 | 18 | a1i | ⊢ ( 𝑓 : { 1 } ⟶ ℝ → 1 ∈ { 1 } ) |
| 20 | 16 19 | ffvelcdmd | ⊢ ( 𝑓 : { 1 } ⟶ ℝ → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
| 21 | 15 20 | sylbi | ⊢ ( 𝑓 ∈ 𝑋 → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
| 23 | 2 | eleq2i | ⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 ∈ ( ℝ ↑m { 1 } ) ) |
| 24 | 12 13 | elmap | ⊢ ( 𝑔 ∈ ( ℝ ↑m { 1 } ) ↔ 𝑔 : { 1 } ⟶ ℝ ) |
| 25 | 23 24 | bitri | ⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 : { 1 } ⟶ ℝ ) |
| 26 | id | ⊢ ( 𝑔 : { 1 } ⟶ ℝ → 𝑔 : { 1 } ⟶ ℝ ) | |
| 27 | 18 | a1i | ⊢ ( 𝑔 : { 1 } ⟶ ℝ → 1 ∈ { 1 } ) |
| 28 | 26 27 | ffvelcdmd | ⊢ ( 𝑔 : { 1 } ⟶ ℝ → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
| 29 | 25 28 | sylbi | ⊢ ( 𝑔 ∈ 𝑋 → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
| 31 | 22 30 | resubcld | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ∈ ℝ ) |
| 32 | 31 | resqcld | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℝ ) |
| 33 | 32 | recnd | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ) |
| 34 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 1 ) ) | |
| 35 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 1 ) ) | |
| 36 | 34 35 | oveq12d | ⊢ ( 𝑘 = 1 → ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) |
| 37 | 36 | oveq1d | ⊢ ( 𝑘 = 1 → ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
| 38 | 37 | sumsn | ⊢ ( ( 1 ∈ ℤ ∧ ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ) → Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
| 39 | 5 33 38 | sylancr | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
| 40 | 39 | fveq2d | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) ) |
| 41 | 31 | absred | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) = ( √ ‘ ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) ) |
| 42 | 40 41 | eqtr4d | ⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) ) |
| 43 | 42 | mpoeq3ia | ⊢ ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) ) |
| 44 | 10 43 | eqtri | ⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) ) |