This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxdsfival.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| rrxdsfival.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | ||
| Assertion | rrxdsfival | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxdsfival.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 2 | rrxdsfival.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 3 | eqid | ⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) | |
| 4 | 3 1 | rrxdsfi | ⊢ ( 𝐼 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 5 | 2 4 | eqtrid | ⊢ ( 𝐼 ∈ Fin → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 6 | 5 | oveqd | ⊢ ( 𝐼 ∈ Fin → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) 𝐺 ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) 𝐺 ) ) |
| 8 | eqidd | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | |
| 9 | fveq1 | ⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 10 | fveq1 | ⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 11 | 9 10 | oveqan12d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 13 | 12 | sumeq2sdv | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 16 | simp2 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) | |
| 17 | simp3 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ 𝑋 ) | |
| 18 | fvexd | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ V ) | |
| 19 | 8 15 16 17 18 | ovmpod | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 20 | 7 19 | eqtrd | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |