This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ehleudis.i | |- I = ( 1 ... N ) |
|
| ehleudis.e | |- E = ( EEhil ` N ) |
||
| ehleudis.x | |- X = ( RR ^m I ) |
||
| ehleudis.d | |- D = ( dist ` E ) |
||
| Assertion | ehleudisval | |- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F D G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehleudis.i | |- I = ( 1 ... N ) |
|
| 2 | ehleudis.e | |- E = ( EEhil ` N ) |
|
| 3 | ehleudis.x | |- X = ( RR ^m I ) |
|
| 4 | ehleudis.d | |- D = ( dist ` E ) |
|
| 5 | 2 | ehlval | |- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
| 6 | 5 | fveq2d | |- ( N e. NN0 -> ( dist ` E ) = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 7 | 4 6 | eqtrid | |- ( N e. NN0 -> D = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 8 | 7 | oveqd | |- ( N e. NN0 -> ( F D G ) = ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) ) |
| 9 | 8 | 3ad2ant1 | |- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F D G ) = ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) ) |
| 10 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 11 | 1 10 | eqeltri | |- I e. Fin |
| 12 | 3 | eleq2i | |- ( F e. X <-> F e. ( RR ^m I ) ) |
| 13 | 12 | biimpi | |- ( F e. X -> F e. ( RR ^m I ) ) |
| 14 | 13 | 3ad2ant2 | |- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> F e. ( RR ^m I ) ) |
| 15 | 3 | eleq2i | |- ( G e. X <-> G e. ( RR ^m I ) ) |
| 16 | 15 | biimpi | |- ( G e. X -> G e. ( RR ^m I ) ) |
| 17 | 16 | 3ad2ant3 | |- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> G e. ( RR ^m I ) ) |
| 18 | eqid | |- ( RR ^m I ) = ( RR ^m I ) |
|
| 19 | 1 | eqcomi | |- ( 1 ... N ) = I |
| 20 | 19 | fveq2i | |- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` I ) |
| 21 | 20 | fveq2i | |- ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( dist ` ( RR^ ` I ) ) |
| 22 | 18 21 | rrxdsfival | |- ( ( I e. Fin /\ F e. ( RR ^m I ) /\ G e. ( RR ^m I ) ) -> ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 23 | 11 14 17 22 | mp3an2i | |- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 24 | 9 23 | eqtrd | |- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F D G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |