This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a singleton has cardinality 1 . (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmnd1bas.1 | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmnd1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| efmnd1bas.0 | ⊢ 𝐴 = { 𝐼 } | ||
| Assertion | efmnd1hash | ⊢ ( 𝐼 ∈ 𝑉 → ( ♯ ‘ 𝐵 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmnd1bas.1 | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmnd1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | efmnd1bas.0 | ⊢ 𝐴 = { 𝐼 } | |
| 4 | snfi | ⊢ { 𝐼 } ∈ Fin | |
| 5 | 3 4 | eqeltri | ⊢ 𝐴 ∈ Fin |
| 6 | 1 2 | efmndhash | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) |
| 7 | 5 6 | ax-mp | ⊢ ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) |
| 8 | 3 | fveq2i | ⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝐼 } ) |
| 9 | hashsng | ⊢ ( 𝐼 ∈ 𝑉 → ( ♯ ‘ { 𝐼 } ) = 1 ) | |
| 10 | 8 9 | eqtrid | ⊢ ( 𝐼 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) = 1 ) |
| 11 | 10 10 | oveq12d | ⊢ ( 𝐼 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) = ( 1 ↑ 1 ) ) |
| 12 | 1z | ⊢ 1 ∈ ℤ | |
| 13 | 1exp | ⊢ ( 1 ∈ ℤ → ( 1 ↑ 1 ) = 1 ) | |
| 14 | 12 13 | ax-mp | ⊢ ( 1 ↑ 1 ) = 1 |
| 15 | 11 14 | eqtrdi | ⊢ ( 𝐼 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) = 1 ) |
| 16 | 7 15 | eqtrid | ⊢ ( 𝐼 ∈ 𝑉 → ( ♯ ‘ 𝐵 ) = 1 ) |