This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a singleton has cardinality 1 . (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmnd1bas.1 | |- G = ( EndoFMnd ` A ) |
|
| efmnd1bas.2 | |- B = ( Base ` G ) |
||
| efmnd1bas.0 | |- A = { I } |
||
| Assertion | efmnd1hash | |- ( I e. V -> ( # ` B ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmnd1bas.1 | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmnd1bas.2 | |- B = ( Base ` G ) |
|
| 3 | efmnd1bas.0 | |- A = { I } |
|
| 4 | snfi | |- { I } e. Fin |
|
| 5 | 3 4 | eqeltri | |- A e. Fin |
| 6 | 1 2 | efmndhash | |- ( A e. Fin -> ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) ) |
| 7 | 5 6 | ax-mp | |- ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) |
| 8 | 3 | fveq2i | |- ( # ` A ) = ( # ` { I } ) |
| 9 | hashsng | |- ( I e. V -> ( # ` { I } ) = 1 ) |
|
| 10 | 8 9 | eqtrid | |- ( I e. V -> ( # ` A ) = 1 ) |
| 11 | 10 10 | oveq12d | |- ( I e. V -> ( ( # ` A ) ^ ( # ` A ) ) = ( 1 ^ 1 ) ) |
| 12 | 1z | |- 1 e. ZZ |
|
| 13 | 1exp | |- ( 1 e. ZZ -> ( 1 ^ 1 ) = 1 ) |
|
| 14 | 12 13 | ax-mp | |- ( 1 ^ 1 ) = 1 |
| 15 | 11 14 | eqtrdi | |- ( I e. V -> ( ( # ` A ) ^ ( # ` A ) ) = 1 ) |
| 16 | 7 15 | eqtrid | |- ( I e. V -> ( # ` B ) = 1 ) |