This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on set A . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmnd.1 | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmnd.2 | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) | ||
| efmnd.3 | ⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) | ||
| efmnd.4 | ⊢ 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | ||
| Assertion | efmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmnd.1 | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmnd.2 | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) | |
| 3 | efmnd.3 | ⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| 4 | efmnd.4 | ⊢ 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | |
| 5 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 6 | ovexd | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑m 𝑎 ) ∈ V ) | |
| 7 | id | ⊢ ( 𝑏 = ( 𝑎 ↑m 𝑎 ) → 𝑏 = ( 𝑎 ↑m 𝑎 ) ) | |
| 8 | id | ⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) | |
| 9 | 8 8 | oveq12d | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑m 𝑎 ) = ( 𝐴 ↑m 𝐴 ) ) |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑m 𝑎 ) = 𝐵 ) |
| 11 | 7 10 | sylan9eqr | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → 𝑏 = 𝐵 ) |
| 12 | 11 | opeq2d | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → 〈 ( Base ‘ ndx ) , 𝑏 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
| 13 | eqidd | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → ( 𝑓 ∘ 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) | |
| 14 | 11 11 13 | mpoeq123dv | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
| 15 | 14 3 | eqtr4di | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) = + ) |
| 16 | 15 | opeq2d | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 = 〈 ( +g ‘ ndx ) , + 〉 ) |
| 17 | simpl | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → 𝑎 = 𝐴 ) | |
| 18 | pweq | ⊢ ( 𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴 ) | |
| 19 | 18 | sneqd | ⊢ ( 𝑎 = 𝐴 → { 𝒫 𝑎 } = { 𝒫 𝐴 } ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → { 𝒫 𝑎 } = { 𝒫 𝐴 } ) |
| 21 | 17 20 | xpeq12d | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → ( 𝑎 × { 𝒫 𝑎 } ) = ( 𝐴 × { 𝒫 𝐴 } ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → ( ∏t ‘ ( 𝑎 × { 𝒫 𝑎 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
| 23 | 22 4 | eqtr4di | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → ( ∏t ‘ ( 𝑎 × { 𝒫 𝑎 } ) ) = 𝐽 ) |
| 24 | 23 | opeq2d | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑎 × { 𝒫 𝑎 } ) ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) |
| 25 | 12 16 24 | tpeq123d | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝑎 ↑m 𝑎 ) ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑎 × { 𝒫 𝑎 } ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |
| 26 | 6 25 | csbied | ⊢ ( 𝑎 = 𝐴 → ⦋ ( 𝑎 ↑m 𝑎 ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑎 × { 𝒫 𝑎 } ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |
| 27 | df-efmnd | ⊢ EndoFMnd = ( 𝑎 ∈ V ↦ ⦋ ( 𝑎 ↑m 𝑎 ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑎 × { 𝒫 𝑎 } ) ) 〉 } ) | |
| 28 | tpex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ∈ V | |
| 29 | 26 27 28 | fvmpt | ⊢ ( 𝐴 ∈ V → ( EndoFMnd ‘ 𝐴 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |
| 30 | 5 29 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( EndoFMnd ‘ 𝐴 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |
| 31 | 1 30 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |