This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the monoid of endofunctions on set x . We represent the monoid as the set of functions from x to itself ( ( x ^m x ) ) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp , see df-symg and symgvalstruct . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-efmnd | ⊢ EndoFMnd = ( 𝑥 ∈ V ↦ ⦋ ( 𝑥 ↑m 𝑥 ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑥 × { 𝒫 𝑥 } ) ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cefmnd | ⊢ EndoFMnd | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | cmap | ⊢ ↑m | |
| 5 | 3 3 4 | co | ⊢ ( 𝑥 ↑m 𝑥 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | cbs | ⊢ Base | |
| 8 | cnx | ⊢ ndx | |
| 9 | 8 7 | cfv | ⊢ ( Base ‘ ndx ) |
| 10 | 6 | cv | ⊢ 𝑏 |
| 11 | 9 10 | cop | ⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
| 12 | cplusg | ⊢ +g | |
| 13 | 8 12 | cfv | ⊢ ( +g ‘ ndx ) |
| 14 | vf | ⊢ 𝑓 | |
| 15 | vg | ⊢ 𝑔 | |
| 16 | 14 | cv | ⊢ 𝑓 |
| 17 | 15 | cv | ⊢ 𝑔 |
| 18 | 16 17 | ccom | ⊢ ( 𝑓 ∘ 𝑔 ) |
| 19 | 14 15 10 10 18 | cmpo | ⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) |
| 20 | 13 19 | cop | ⊢ 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 |
| 21 | cts | ⊢ TopSet | |
| 22 | 8 21 | cfv | ⊢ ( TopSet ‘ ndx ) |
| 23 | cpt | ⊢ ∏t | |
| 24 | 3 | cpw | ⊢ 𝒫 𝑥 |
| 25 | 24 | csn | ⊢ { 𝒫 𝑥 } |
| 26 | 3 25 | cxp | ⊢ ( 𝑥 × { 𝒫 𝑥 } ) |
| 27 | 26 23 | cfv | ⊢ ( ∏t ‘ ( 𝑥 × { 𝒫 𝑥 } ) ) |
| 28 | 22 27 | cop | ⊢ 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑥 × { 𝒫 𝑥 } ) ) 〉 |
| 29 | 11 20 28 | ctp | ⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑥 × { 𝒫 𝑥 } ) ) 〉 } |
| 30 | 6 5 29 | csb | ⊢ ⦋ ( 𝑥 ↑m 𝑥 ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑥 × { 𝒫 𝑥 } ) ) 〉 } |
| 31 | 1 2 30 | cmpt | ⊢ ( 𝑥 ∈ V ↦ ⦋ ( 𝑥 ↑m 𝑥 ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑥 × { 𝒫 𝑥 } ) ) 〉 } ) |
| 32 | 0 31 | wceq | ⊢ EndoFMnd = ( 𝑥 ∈ V ↦ ⦋ ( 𝑥 ↑m 𝑥 ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑥 × { 𝒫 𝑥 } ) ) 〉 } ) |