This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine function is an inverse to sin . This is the main property that justifies the notation arcsin or sin ^ -u 1 . Because sin is not an injection, the other converse identity asinsin is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinasin | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asincl | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | sinval | ⊢ ( ( arcsin ‘ 𝐴 ) ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 7 | 6 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( i · 𝐴 ) ∈ ℂ ) |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 10 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 12 | 11 | sqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 13 | 6 7 12 | pnpcan2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) − ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) |
| 14 | efiasin | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 15 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) | |
| 16 | 4 1 15 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
| 17 | asinneg | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ - 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
| 19 | 16 18 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · ( arcsin ‘ - 𝐴 ) ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) ) |
| 21 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 22 | efiasin | ⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
| 24 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 25 | 4 24 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 26 | sqneg | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( - 𝐴 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 28 | 27 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 29 | 25 28 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 30 | 20 23 29 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 31 | 14 30 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) − ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 32 | 6 | 2timesd | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 33 | 2cn | ⊢ 2 ∈ ℂ | |
| 34 | mulass | ⊢ ( ( 2 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · i ) · 𝐴 ) = ( 2 · ( i · 𝐴 ) ) ) | |
| 35 | 33 4 34 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · i ) · 𝐴 ) = ( 2 · ( i · 𝐴 ) ) ) |
| 36 | 6 6 | subnegd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 37 | 32 35 36 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · i ) · 𝐴 ) = ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) |
| 38 | 13 31 37 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( 2 · i ) · 𝐴 ) ) |
| 39 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) | |
| 40 | 4 1 39 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) |
| 41 | efcl | ⊢ ( ( i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 42 | 40 41 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 43 | negicn | ⊢ - i ∈ ℂ | |
| 44 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) | |
| 45 | 43 1 44 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) |
| 46 | efcl | ⊢ ( ( - i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 47 | 45 46 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 48 | 42 47 | subcld | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 49 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 50 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 51 | 50 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 2 · i ) ∈ ℂ ) |
| 52 | 2muline0 | ⊢ ( 2 · i ) ≠ 0 | |
| 53 | 52 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 2 · i ) ≠ 0 ) |
| 54 | 48 49 51 53 | divmul2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) = 𝐴 ↔ ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( 2 · i ) · 𝐴 ) ) ) |
| 55 | 38 54 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) = 𝐴 ) |
| 56 | 3 55 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ) |