This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efgt1p2 | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) < ( exp ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℕ0 ) |
| 4 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 5 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 6 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℕ0 ) |
| 8 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 9 | 0z | ⊢ 0 ∈ ℤ | |
| 10 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 11 | 10 | eftval | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) |
| 12 | 6 11 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) |
| 13 | eft0val | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) | |
| 14 | 12 13 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = 1 ) |
| 15 | 9 14 | seq1i | ⊢ ( 𝐴 ∈ ℂ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 0 ) = 1 ) |
| 16 | 10 | eftval | ⊢ ( 1 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) ) |
| 17 | 2 16 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) |
| 18 | fac1 | ⊢ ( ! ‘ 1 ) = 1 | |
| 19 | 18 | oveq2i | ⊢ ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = ( ( 𝐴 ↑ 1 ) / 1 ) |
| 20 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / 1 ) = ( 𝐴 / 1 ) ) |
| 22 | div1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) | |
| 23 | 21 22 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / 1 ) = 𝐴 ) |
| 24 | 19 23 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = 𝐴 ) |
| 25 | 17 24 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = 𝐴 ) |
| 26 | 1 7 8 15 25 | seqp1d | ⊢ ( 𝐴 ∈ ℂ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) = ( 1 + 𝐴 ) ) |
| 27 | 5 26 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) = ( 1 + 𝐴 ) ) |
| 28 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 29 | 10 | eftval | ⊢ ( 2 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 2 ) = ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) ) |
| 30 | 28 29 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 2 ) = ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) |
| 31 | fac2 | ⊢ ( ! ‘ 2 ) = 2 | |
| 32 | 31 | oveq2i | ⊢ ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) = ( ( 𝐴 ↑ 2 ) / 2 ) |
| 33 | 30 32 | eqtri | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 2 ) = ( ( 𝐴 ↑ 2 ) / 2 ) |
| 34 | 33 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 2 ) = ( ( 𝐴 ↑ 2 ) / 2 ) ) |
| 35 | 1 3 4 27 34 | seqp1d | ⊢ ( 𝐴 ∈ ℝ+ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 2 ) = ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 36 | id | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) | |
| 37 | 28 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → 2 ∈ ℕ0 ) |
| 38 | 10 36 37 | effsumlt | ⊢ ( 𝐴 ∈ ℝ+ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 2 ) < ( exp ‘ 𝐴 ) ) |
| 39 | 35 38 | eqbrtrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) < ( exp ‘ 𝐴 ) ) |