This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efgt1p2 | |- ( A e. RR+ -> ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) < ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 1nn0 | |- 1 e. NN0 |
|
| 3 | 2 | a1i | |- ( A e. RR+ -> 1 e. NN0 ) |
| 4 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 5 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 6 | 0nn0 | |- 0 e. NN0 |
|
| 7 | 6 | a1i | |- ( A e. CC -> 0 e. NN0 ) |
| 8 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 9 | 0z | |- 0 e. ZZ |
|
| 10 | eqid | |- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 11 | 10 | eftval | |- ( 0 e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) ) |
| 12 | 6 11 | ax-mp | |- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) |
| 13 | eft0val | |- ( A e. CC -> ( ( A ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
|
| 14 | 12 13 | eqtrid | |- ( A e. CC -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = 1 ) |
| 15 | 9 14 | seq1i | |- ( A e. CC -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 0 ) = 1 ) |
| 16 | 10 | eftval | |- ( 1 e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = ( ( A ^ 1 ) / ( ! ` 1 ) ) ) |
| 17 | 2 16 | ax-mp | |- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = ( ( A ^ 1 ) / ( ! ` 1 ) ) |
| 18 | fac1 | |- ( ! ` 1 ) = 1 |
|
| 19 | 18 | oveq2i | |- ( ( A ^ 1 ) / ( ! ` 1 ) ) = ( ( A ^ 1 ) / 1 ) |
| 20 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 21 | 20 | oveq1d | |- ( A e. CC -> ( ( A ^ 1 ) / 1 ) = ( A / 1 ) ) |
| 22 | div1 | |- ( A e. CC -> ( A / 1 ) = A ) |
|
| 23 | 21 22 | eqtrd | |- ( A e. CC -> ( ( A ^ 1 ) / 1 ) = A ) |
| 24 | 19 23 | eqtrid | |- ( A e. CC -> ( ( A ^ 1 ) / ( ! ` 1 ) ) = A ) |
| 25 | 17 24 | eqtrid | |- ( A e. CC -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = A ) |
| 26 | 1 7 8 15 25 | seqp1d | |- ( A e. CC -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) = ( 1 + A ) ) |
| 27 | 5 26 | syl | |- ( A e. RR+ -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) = ( 1 + A ) ) |
| 28 | 2nn0 | |- 2 e. NN0 |
|
| 29 | 10 | eftval | |- ( 2 e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 2 ) = ( ( A ^ 2 ) / ( ! ` 2 ) ) ) |
| 30 | 28 29 | ax-mp | |- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 2 ) = ( ( A ^ 2 ) / ( ! ` 2 ) ) |
| 31 | fac2 | |- ( ! ` 2 ) = 2 |
|
| 32 | 31 | oveq2i | |- ( ( A ^ 2 ) / ( ! ` 2 ) ) = ( ( A ^ 2 ) / 2 ) |
| 33 | 30 32 | eqtri | |- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 2 ) = ( ( A ^ 2 ) / 2 ) |
| 34 | 33 | a1i | |- ( A e. RR+ -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 2 ) = ( ( A ^ 2 ) / 2 ) ) |
| 35 | 1 3 4 27 34 | seqp1d | |- ( A e. RR+ -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 2 ) = ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) ) |
| 36 | id | |- ( A e. RR+ -> A e. RR+ ) |
|
| 37 | 28 | a1i | |- ( A e. RR+ -> 2 e. NN0 ) |
| 38 | 10 36 37 | effsumlt | |- ( A e. RR+ -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 2 ) < ( exp ` A ) ) |
| 39 | 35 38 | eqbrtrrd | |- ( A e. RR+ -> ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) < ( exp ` A ) ) |