This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgred2 | |- ( ( A e. dom S /\ B e. dom S ) -> ( ( S ` A ) .~ ( S ` B ) <-> ( A ` 0 ) = ( B ` 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | 1 2 3 4 5 6 | efgsfo | |- S : dom S -onto-> W |
| 8 | fof | |- ( S : dom S -onto-> W -> S : dom S --> W ) |
|
| 9 | 7 8 | ax-mp | |- S : dom S --> W |
| 10 | 9 | ffvelcdmi | |- ( B e. dom S -> ( S ` B ) e. W ) |
| 11 | 10 | ad2antlr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( S ` B ) e. W ) |
| 12 | 1 2 3 4 5 6 | efgredeu | |- ( ( S ` B ) e. W -> E! d e. D d .~ ( S ` B ) ) |
| 13 | reurmo | |- ( E! d e. D d .~ ( S ` B ) -> E* d e. D d .~ ( S ` B ) ) |
|
| 14 | 11 12 13 | 3syl | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> E* d e. D d .~ ( S ` B ) ) |
| 15 | 1 2 3 4 5 6 | efgsdm | |- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
| 16 | 15 | simp2bi | |- ( A e. dom S -> ( A ` 0 ) e. D ) |
| 17 | 16 | ad2antrr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) e. D ) |
| 18 | 1 2 | efger | |- .~ Er W |
| 19 | 18 | a1i | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> .~ Er W ) |
| 20 | 1 2 3 4 5 6 | efgsrel | |- ( A e. dom S -> ( A ` 0 ) .~ ( S ` A ) ) |
| 21 | 20 | ad2antrr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) .~ ( S ` A ) ) |
| 22 | simpr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( S ` A ) .~ ( S ` B ) ) |
|
| 23 | 19 21 22 | ertrd | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) .~ ( S ` B ) ) |
| 24 | 1 2 3 4 5 6 | efgsdm | |- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
| 25 | 24 | simp2bi | |- ( B e. dom S -> ( B ` 0 ) e. D ) |
| 26 | 25 | ad2antlr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( B ` 0 ) e. D ) |
| 27 | 1 2 3 4 5 6 | efgsrel | |- ( B e. dom S -> ( B ` 0 ) .~ ( S ` B ) ) |
| 28 | 27 | ad2antlr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( B ` 0 ) .~ ( S ` B ) ) |
| 29 | breq1 | |- ( d = ( A ` 0 ) -> ( d .~ ( S ` B ) <-> ( A ` 0 ) .~ ( S ` B ) ) ) |
|
| 30 | breq1 | |- ( d = ( B ` 0 ) -> ( d .~ ( S ` B ) <-> ( B ` 0 ) .~ ( S ` B ) ) ) |
|
| 31 | 29 30 | rmoi | |- ( ( E* d e. D d .~ ( S ` B ) /\ ( ( A ` 0 ) e. D /\ ( A ` 0 ) .~ ( S ` B ) ) /\ ( ( B ` 0 ) e. D /\ ( B ` 0 ) .~ ( S ` B ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 32 | 14 17 23 26 28 31 | syl122anc | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 33 | 18 | a1i | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> .~ Er W ) |
| 34 | 20 | ad2antrr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) .~ ( S ` A ) ) |
| 35 | simpr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
|
| 36 | 27 | ad2antlr | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( B ` 0 ) .~ ( S ` B ) ) |
| 37 | 35 36 | eqbrtrd | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) .~ ( S ` B ) ) |
| 38 | 33 34 37 | ertr3d | |- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( S ` A ) .~ ( S ` B ) ) |
| 39 | 32 38 | impbida | |- ( ( A e. dom S /\ B e. dom S ) -> ( ( S ` A ) .~ ( S ` B ) <-> ( A ` 0 ) = ( B ` 0 ) ) ) |