This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efper | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( exp ‘ ( 𝐴 + ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) = ( exp ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | picn | ⊢ π ∈ ℂ | |
| 4 | 2 3 | mulcli | ⊢ ( 2 · π ) ∈ ℂ |
| 5 | 1 4 | mulcli | ⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 6 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 7 | mulcl | ⊢ ( ( ( i · ( 2 · π ) ) ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( i · ( 2 · π ) ) · 𝐾 ) ∈ ℂ ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐾 ∈ ℤ → ( ( i · ( 2 · π ) ) · 𝐾 ) ∈ ℂ ) |
| 9 | efadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( i · ( 2 · π ) ) · 𝐾 ) ∈ ℂ ) → ( exp ‘ ( 𝐴 + ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( exp ‘ ( 𝐴 + ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) ) |
| 11 | ef2kpi | ⊢ ( 𝐾 ∈ ℤ → ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) = 1 ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝐾 ∈ ℤ → ( ( exp ‘ 𝐴 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) = ( ( exp ‘ 𝐴 ) · 1 ) ) |
| 13 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 14 | 13 | mulridd | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) · 1 ) = ( exp ‘ 𝐴 ) ) |
| 15 | 12 14 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( ( exp ‘ 𝐴 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 16 | 10 15 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( exp ‘ ( 𝐴 + ( ( i · ( 2 · π ) ) · 𝐾 ) ) ) = ( exp ‘ 𝐴 ) ) |