This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a derivative to an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvresioo | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℝ D ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ℝ ⊆ ℂ ) |
| 3 | simpr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 4 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐴 ⊆ ℝ ) | |
| 5 | ioossre | ⊢ ( 𝐵 (,) 𝐶 ) ⊆ ℝ | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐵 (,) 𝐶 ) ⊆ ℝ ) |
| 7 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 8 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 9 | 7 8 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℝ ∧ ( 𝐵 (,) 𝐶 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) ) ) |
| 10 | 2 3 4 6 9 | syl22anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℝ D ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) ) ) |
| 11 | ioontr | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) = ( 𝐵 (,) 𝐶 ) | |
| 12 | 11 | reseq2i | ⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐵 (,) 𝐶 ) ) |
| 13 | 10 12 | eqtrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℝ D ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |