This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a derivative to an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvresioo | |- ( ( A C_ RR /\ F : A --> CC ) -> ( RR _D ( F |` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( B (,) C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn | |- RR C_ CC |
|
| 2 | 1 | a1i | |- ( ( A C_ RR /\ F : A --> CC ) -> RR C_ CC ) |
| 3 | simpr | |- ( ( A C_ RR /\ F : A --> CC ) -> F : A --> CC ) |
|
| 4 | simpl | |- ( ( A C_ RR /\ F : A --> CC ) -> A C_ RR ) |
|
| 5 | ioossre | |- ( B (,) C ) C_ RR |
|
| 6 | 5 | a1i | |- ( ( A C_ RR /\ F : A --> CC ) -> ( B (,) C ) C_ RR ) |
| 7 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 8 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 9 | 7 8 | dvres | |- ( ( ( RR C_ CC /\ F : A --> CC ) /\ ( A C_ RR /\ ( B (,) C ) C_ RR ) ) -> ( RR _D ( F |` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) ) ) |
| 10 | 2 3 4 6 9 | syl22anc | |- ( ( A C_ RR /\ F : A --> CC ) -> ( RR _D ( F |` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) ) ) |
| 11 | ioontr | |- ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) = ( B (,) C ) |
|
| 12 | 11 | reseq2i | |- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( B (,) C ) ) |
| 13 | 10 12 | eqtrdi | |- ( ( A C_ RR /\ F : A --> CC ) -> ( RR _D ( F |` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( B (,) C ) ) ) |