This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element divided by the ring unity is itself. ( div1 analog.) (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvr1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvr1.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| dvr1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | dvr1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 / 1 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvr1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvr1.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 3 | dvr1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
| 5 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 6 | 5 3 | 1unit | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 9 | 1 7 5 8 2 | dvrval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 / 1 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 1 ) ) ) |
| 10 | 4 6 9 | syl2anr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 / 1 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 1 ) ) ) |
| 11 | 8 3 | 1rinv | ⊢ ( 𝑅 ∈ Ring → ( ( invr ‘ 𝑅 ) ‘ 1 ) = 1 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( invr ‘ 𝑅 ) ‘ 1 ) = 1 ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 1 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) 1 ) ) |
| 14 | 1 7 3 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) 1 ) = 𝑋 ) |
| 15 | 10 13 14 | 3eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 / 1 ) = 𝑋 ) |