This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element divided by the ring unity is itself. ( div1 analog.) (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvr1.b | |- B = ( Base ` R ) |
|
| dvr1.d | |- ./ = ( /r ` R ) |
||
| dvr1.o | |- .1. = ( 1r ` R ) |
||
| Assertion | dvr1 | |- ( ( R e. Ring /\ X e. B ) -> ( X ./ .1. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvr1.b | |- B = ( Base ` R ) |
|
| 2 | dvr1.d | |- ./ = ( /r ` R ) |
|
| 3 | dvr1.o | |- .1. = ( 1r ` R ) |
|
| 4 | id | |- ( X e. B -> X e. B ) |
|
| 5 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 6 | 5 3 | 1unit | |- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 9 | 1 7 5 8 2 | dvrval | |- ( ( X e. B /\ .1. e. ( Unit ` R ) ) -> ( X ./ .1. ) = ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) ) |
| 10 | 4 6 9 | syl2anr | |- ( ( R e. Ring /\ X e. B ) -> ( X ./ .1. ) = ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) ) |
| 11 | 8 3 | 1rinv | |- ( R e. Ring -> ( ( invr ` R ) ` .1. ) = .1. ) |
| 12 | 11 | adantr | |- ( ( R e. Ring /\ X e. B ) -> ( ( invr ` R ) ` .1. ) = .1. ) |
| 13 | 12 | oveq2d | |- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) = ( X ( .r ` R ) .1. ) ) |
| 14 | 1 7 3 | ringridm | |- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) .1. ) = X ) |
| 15 | 10 13 14 | 3eqtrd | |- ( ( R e. Ring /\ X e. B ) -> ( X ./ .1. ) = X ) |