This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | dvdsrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
| 4 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 5 | 1 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 7 | 1 2 6 | dvdsrmul | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → 𝑋 ∥ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 8 | 3 5 7 | syl2anr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 9 | 1 6 4 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
| 10 | 8 9 | breqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ 𝑋 ) |