This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| Assertion | dvdsrid | |- ( ( R e. Ring /\ X e. B ) -> X .|| X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | id | |- ( X e. B -> X e. B ) |
|
| 4 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 5 | 1 4 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | 1 2 6 | dvdsrmul | |- ( ( X e. B /\ ( 1r ` R ) e. B ) -> X .|| ( ( 1r ` R ) ( .r ` R ) X ) ) |
| 8 | 3 5 7 | syl2anr | |- ( ( R e. Ring /\ X e. B ) -> X .|| ( ( 1r ` R ) ( .r ` R ) X ) ) |
| 9 | 1 6 4 | ringlidm | |- ( ( R e. Ring /\ X e. B ) -> ( ( 1r ` R ) ( .r ` R ) X ) = X ) |
| 10 | 8 9 | breqtrd | |- ( ( R e. Ring /\ X e. B ) -> X .|| X ) |