This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No number between 1 and M - 1 divides M . (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzm1ndvds | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀 ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 | ⊢ ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ≤ ( 𝑀 − 1 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ≤ ( 𝑀 − 1 ) ) |
| 3 | elfzelz | ⊢ ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ∈ ℤ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 5 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 7 | zltlem1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 < 𝑀 ↔ 𝑁 ≤ ( 𝑀 − 1 ) ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑁 < 𝑀 ↔ 𝑁 ≤ ( 𝑀 − 1 ) ) ) |
| 9 | 2 8 | mpbird | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 < 𝑀 ) |
| 10 | elfznn | ⊢ ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ∈ ℕ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℕ ) |
| 12 | 11 | nnred | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℝ ) |
| 13 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 15 | 12 14 | ltnled | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁 ) ) |
| 16 | 9 15 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀 ≤ 𝑁 ) |
| 17 | dvdsle | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁 ) ) | |
| 18 | 6 11 17 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁 ) ) |
| 19 | 16 18 | mtod | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀 ∥ 𝑁 ) |