This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonzero integer M divides another integer N , the other integer N divided by the nonzero integer M (i.e. thedivisor conjugate of N to M ) divides the other integer N . Theorem 1.1(k) in ApostolNT p. 14. (Contributed by AV, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divconjdvds | ⊢ ( ( 𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0 ) → ( 𝑁 / 𝑀 ) ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | ⊢ ( 𝑀 ∥ 𝑁 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑀 ∈ ℤ ) | |
| 3 | oveq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 · ( 𝑁 / 𝑀 ) ) = ( 𝑀 · ( 𝑁 / 𝑀 ) ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 · ( 𝑁 / 𝑀 ) ) = 𝑁 ↔ ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) ) |
| 5 | 4 | adantl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 · ( 𝑁 / 𝑀 ) ) = 𝑁 ↔ ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) ) |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑁 ∈ ℂ ) |
| 9 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑀 ∈ ℂ ) |
| 12 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑀 ≠ 0 ) | |
| 13 | 8 11 12 | divcan2d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) |
| 14 | 2 5 13 | rspcedvd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ∃ 𝑚 ∈ ℤ ( 𝑚 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ∃ 𝑚 ∈ ℤ ( 𝑚 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) |
| 16 | simpr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) | |
| 17 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 18 | 17 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑁 ∈ ℤ ) |
| 19 | 2 12 18 | 3jca | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ) |
| 21 | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 23 | 16 22 | mpbid | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 / 𝑀 ) ∈ ℤ ) |
| 24 | 18 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 25 | divides | ⊢ ( ( ( 𝑁 / 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 / 𝑀 ) ∥ 𝑁 ↔ ∃ 𝑚 ∈ ℤ ( 𝑚 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( ( 𝑁 / 𝑀 ) ∥ 𝑁 ↔ ∃ 𝑚 ∈ ℤ ( 𝑚 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) ) |
| 27 | 15 26 | mpbird | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 / 𝑀 ) ∥ 𝑁 ) |
| 28 | 27 | exp31 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≠ 0 → ( 𝑀 ∥ 𝑁 → ( 𝑁 / 𝑀 ) ∥ 𝑁 ) ) ) |
| 29 | 28 | com3r | ⊢ ( 𝑀 ∥ 𝑁 → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≠ 0 → ( 𝑁 / 𝑀 ) ∥ 𝑁 ) ) ) |
| 30 | 1 29 | mpd | ⊢ ( 𝑀 ∥ 𝑁 → ( 𝑀 ≠ 0 → ( 𝑁 / 𝑀 ) ∥ 𝑁 ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0 ) → ( 𝑁 / 𝑀 ) ∥ 𝑁 ) |