This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in ApostolNT p. 14. (Contributed by Mario Carneiro, 30-May-2014) (Revised by AV, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsabseq | ⊢ ( ( 𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | ⊢ ( 𝑀 ∥ 𝑁 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 2 | simpr | ⊢ ( ( 𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) | |
| 3 | breq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 ∥ 𝑀 ↔ 0 ∥ 𝑀 ) ) | |
| 4 | 0dvds | ⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
| 6 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 7 | 6 | abs00ad | ⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) = 0 ↔ 𝑀 = 0 ) ) |
| 8 | 7 | bicomd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 = 0 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 0 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 10 | 5 9 | bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑀 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 11 | 3 10 | sylan9bb | ⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 12 | fveq2 | ⊢ ( 𝑁 = 0 → ( abs ‘ 𝑁 ) = ( abs ‘ 0 ) ) | |
| 13 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝑁 = 0 → ( abs ‘ 𝑁 ) = 0 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( abs ‘ 𝑁 ) = 0 ) |
| 16 | 15 | eqeq2d | ⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 17 | 11 16 | bitr4d | ⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 18 | 2 17 | imbitrid | ⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 19 | 18 | expd | ⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 20 | simprl | ⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) | |
| 21 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 22 | 21 | adantl | ⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 23 | neqne | ⊢ ( ¬ 𝑁 = 0 → 𝑁 ≠ 0 ) | |
| 24 | 23 | adantr | ⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ≠ 0 ) |
| 25 | dvdsleabs2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) | |
| 26 | 20 22 24 25 | syl3anc | ⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) |
| 27 | simpr | ⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) | |
| 28 | breq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) | |
| 29 | 0dvds | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) | |
| 30 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 31 | 30 | abs00ad | ⊢ ( 𝑁 ∈ ℤ → ( ( abs ‘ 𝑁 ) = 0 ↔ 𝑁 = 0 ) ) |
| 32 | eqcom | ⊢ ( ( abs ‘ 𝑁 ) = 0 ↔ 0 = ( abs ‘ 𝑁 ) ) | |
| 33 | 31 32 | bitr3di | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 0 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 34 | 29 33 | bitrd | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 36 | 28 35 | sylan9bb | ⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 37 | fveq2 | ⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = ( abs ‘ 0 ) ) | |
| 38 | 37 13 | eqtrdi | ⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = 0 ) |
| 39 | 38 | adantr | ⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( abs ‘ 𝑀 ) = 0 ) |
| 40 | 39 | eqeq1d | ⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 41 | 36 40 | bitr4d | ⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 42 | 27 41 | imbitrid | ⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 43 | 42 | a1dd | ⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 44 | 43 | expcomd | ⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 45 | 21 | adantl | ⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 46 | simprl | ⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) | |
| 47 | neqne | ⊢ ( ¬ 𝑀 = 0 → 𝑀 ≠ 0 ) | |
| 48 | 47 | adantr | ⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ≠ 0 ) |
| 49 | dvdsleabs2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ) ) | |
| 50 | 45 46 48 49 | syl3anc | ⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ) ) |
| 51 | eqcom | ⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ ( abs ‘ 𝑁 ) = ( abs ‘ 𝑀 ) ) | |
| 52 | 30 | abscld | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 53 | 6 | abscld | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℝ ) |
| 54 | letri3 | ⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℝ ∧ ( abs ‘ 𝑀 ) ∈ ℝ ) → ( ( abs ‘ 𝑁 ) = ( abs ‘ 𝑀 ) ↔ ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) ) | |
| 55 | 52 53 54 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = ( abs ‘ 𝑀 ) ↔ ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) ) |
| 56 | 51 55 | bitrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) ) |
| 57 | 56 | biimprd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 58 | 57 | expd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 59 | 58 | adantl | ⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 60 | 50 59 | syld | ⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 61 | 60 | a1d | ⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 62 | 44 61 | pm2.61ian | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 63 | 62 | com34 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 64 | 63 | adantl | ⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 65 | 26 64 | mpdd | ⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 66 | 19 65 | pm2.61ian | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 67 | 1 66 | mpcom | ⊢ ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 68 | 67 | imp | ⊢ ( ( 𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |