This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsleabs2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zabscl | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) | |
| 2 | 1 | 3anim1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
| 4 | absdvdsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 6 | 5 | biimpa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( abs ‘ 𝑀 ) ∥ 𝑁 ) |
| 7 | dvdsleabs | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) | |
| 8 | 3 6 7 | sylc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑀 ∥ 𝑁 ) → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) |
| 9 | 8 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) |