This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in ApostolNT p. 14. (Contributed by Mario Carneiro, 30-May-2014) (Revised by AV, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsabseq | |- ( ( M || N /\ N || M ) -> ( abs ` M ) = ( abs ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | |- ( M || N -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 2 | simpr | |- ( ( M || N /\ N || M ) -> N || M ) |
|
| 3 | breq1 | |- ( N = 0 -> ( N || M <-> 0 || M ) ) |
|
| 4 | 0dvds | |- ( M e. ZZ -> ( 0 || M <-> M = 0 ) ) |
|
| 5 | 4 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 || M <-> M = 0 ) ) |
| 6 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 7 | 6 | abs00ad | |- ( M e. ZZ -> ( ( abs ` M ) = 0 <-> M = 0 ) ) |
| 8 | 7 | bicomd | |- ( M e. ZZ -> ( M = 0 <-> ( abs ` M ) = 0 ) ) |
| 9 | 8 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M = 0 <-> ( abs ` M ) = 0 ) ) |
| 10 | 5 9 | bitrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 || M <-> ( abs ` M ) = 0 ) ) |
| 11 | 3 10 | sylan9bb | |- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M <-> ( abs ` M ) = 0 ) ) |
| 12 | fveq2 | |- ( N = 0 -> ( abs ` N ) = ( abs ` 0 ) ) |
|
| 13 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 14 | 12 13 | eqtrdi | |- ( N = 0 -> ( abs ` N ) = 0 ) |
| 15 | 14 | adantr | |- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( abs ` N ) = 0 ) |
| 16 | 15 | eqeq2d | |- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` M ) = ( abs ` N ) <-> ( abs ` M ) = 0 ) ) |
| 17 | 11 16 | bitr4d | |- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M <-> ( abs ` M ) = ( abs ` N ) ) ) |
| 18 | 2 17 | imbitrid | |- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M || N /\ N || M ) -> ( abs ` M ) = ( abs ` N ) ) ) |
| 19 | 18 | expd | |- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) |
| 20 | simprl | |- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. ZZ ) |
|
| 21 | simpr | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 22 | 21 | adantl | |- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
| 23 | neqne | |- ( -. N = 0 -> N =/= 0 ) |
|
| 24 | 23 | adantr | |- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> N =/= 0 ) |
| 25 | dvdsleabs2 | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |
|
| 26 | 20 22 24 25 | syl3anc | |- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |
| 27 | simpr | |- ( ( N || M /\ M || N ) -> M || N ) |
|
| 28 | breq1 | |- ( M = 0 -> ( M || N <-> 0 || N ) ) |
|
| 29 | 0dvds | |- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
|
| 30 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 31 | 30 | abs00ad | |- ( N e. ZZ -> ( ( abs ` N ) = 0 <-> N = 0 ) ) |
| 32 | eqcom | |- ( ( abs ` N ) = 0 <-> 0 = ( abs ` N ) ) |
|
| 33 | 31 32 | bitr3di | |- ( N e. ZZ -> ( N = 0 <-> 0 = ( abs ` N ) ) ) |
| 34 | 29 33 | bitrd | |- ( N e. ZZ -> ( 0 || N <-> 0 = ( abs ` N ) ) ) |
| 35 | 34 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 || N <-> 0 = ( abs ` N ) ) ) |
| 36 | 28 35 | sylan9bb | |- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N <-> 0 = ( abs ` N ) ) ) |
| 37 | fveq2 | |- ( M = 0 -> ( abs ` M ) = ( abs ` 0 ) ) |
|
| 38 | 37 13 | eqtrdi | |- ( M = 0 -> ( abs ` M ) = 0 ) |
| 39 | 38 | adantr | |- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( abs ` M ) = 0 ) |
| 40 | 39 | eqeq1d | |- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` M ) = ( abs ` N ) <-> 0 = ( abs ` N ) ) ) |
| 41 | 36 40 | bitr4d | |- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N <-> ( abs ` M ) = ( abs ` N ) ) ) |
| 42 | 27 41 | imbitrid | |- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( N || M /\ M || N ) -> ( abs ` M ) = ( abs ` N ) ) ) |
| 43 | 42 | a1dd | |- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( N || M /\ M || N ) -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
| 44 | 43 | expcomd | |- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
| 45 | 21 | adantl | |- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
| 46 | simprl | |- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. ZZ ) |
|
| 47 | neqne | |- ( -. M = 0 -> M =/= 0 ) |
|
| 48 | 47 | adantr | |- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> M =/= 0 ) |
| 49 | dvdsleabs2 | |- ( ( N e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> ( N || M -> ( abs ` N ) <_ ( abs ` M ) ) ) |
|
| 50 | 45 46 48 49 | syl3anc | |- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M -> ( abs ` N ) <_ ( abs ` M ) ) ) |
| 51 | eqcom | |- ( ( abs ` M ) = ( abs ` N ) <-> ( abs ` N ) = ( abs ` M ) ) |
|
| 52 | 30 | abscld | |- ( N e. ZZ -> ( abs ` N ) e. RR ) |
| 53 | 6 | abscld | |- ( M e. ZZ -> ( abs ` M ) e. RR ) |
| 54 | letri3 | |- ( ( ( abs ` N ) e. RR /\ ( abs ` M ) e. RR ) -> ( ( abs ` N ) = ( abs ` M ) <-> ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) ) ) |
|
| 55 | 52 53 54 | syl2anr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` N ) = ( abs ` M ) <-> ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) ) ) |
| 56 | 51 55 | bitrid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = ( abs ` N ) <-> ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) ) ) |
| 57 | 56 | biimprd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) -> ( abs ` M ) = ( abs ` N ) ) ) |
| 58 | 57 | expd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` N ) <_ ( abs ` M ) -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
| 59 | 58 | adantl | |- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` N ) <_ ( abs ` M ) -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
| 60 | 50 59 | syld | |- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
| 61 | 60 | a1d | |- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
| 62 | 44 61 | pm2.61ian | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
| 63 | 62 | com34 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( ( abs ` M ) <_ ( abs ` N ) -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
| 64 | 63 | adantl | |- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( ( abs ` M ) <_ ( abs ` N ) -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
| 65 | 26 64 | mpdd | |- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) |
| 66 | 19 65 | pm2.61ian | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) |
| 67 | 1 66 | mpcom | |- ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) |
| 68 | 67 | imp | |- ( ( M || N /\ N || M ) -> ( abs ` M ) = ( abs ` N ) ) |