This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of drngmul0or as of 25-Jun-2025. (Contributed by NM, 8-Oct-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmuleq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngmuleq0.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drngmuleq0.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drngmuleq0.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| drngmuleq0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| drngmuleq0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | drngmul0orOLD | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmuleq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngmuleq0.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drngmuleq0.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | drngmuleq0.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 5 | drngmuleq0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | drngmuleq0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | df-ne | ⊢ ( 𝑋 ≠ 0 ↔ ¬ 𝑋 = 0 ) | |
| 8 | oveq2 | ⊢ ( ( 𝑋 · 𝑌 ) = 0 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) ) | |
| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) ) |
| 10 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑅 ∈ DivRing ) |
| 11 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐵 ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 13 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 15 | 1 2 3 13 14 | drnginvrl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 16 | 10 11 12 15 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
| 18 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑅 ∈ Ring ) |
| 21 | 1 2 14 | drnginvrcl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 22 | 10 11 12 21 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 23 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ 𝐵 ) |
| 24 | 1 3 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) |
| 25 | 20 22 11 23 24 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) |
| 26 | 1 3 13 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
| 27 | 19 6 26 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
| 29 | 17 25 28 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = 𝑌 ) |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = 𝑌 ) |
| 31 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → 𝑅 ∈ Ring ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → 𝑅 ∈ Ring ) |
| 33 | 22 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 34 | 1 3 2 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) = 0 ) |
| 35 | 32 33 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) = 0 ) |
| 36 | 9 30 35 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → 𝑌 = 0 ) |
| 37 | 36 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 𝑋 ≠ 0 → 𝑌 = 0 ) ) |
| 38 | 7 37 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( ¬ 𝑋 = 0 → 𝑌 = 0 ) ) |
| 39 | 38 | orrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) |
| 40 | 39 | ex | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 41 | 1 3 2 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = 0 ) |
| 42 | 19 6 41 | syl2anc | ⊢ ( 𝜑 → ( 0 · 𝑌 ) = 0 ) |
| 43 | oveq1 | ⊢ ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ) | |
| 44 | 43 | eqeq1d | ⊢ ( 𝑋 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 0 · 𝑌 ) = 0 ) ) |
| 45 | 42 44 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 46 | 1 3 2 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| 47 | 19 5 46 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 · 0 ) = 0 ) |
| 48 | oveq2 | ⊢ ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) | |
| 49 | 48 | eqeq1d | ⊢ ( 𝑌 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 · 0 ) = 0 ) ) |
| 50 | 47 49 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 51 | 45 50 | jaod | ⊢ ( 𝜑 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 52 | 40 51 | impbid | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |